UNITED STATES DEPARTMENT OF THE INTERIOR
NATIONAL PARK SERVICE

NATIONAL REGISTER OF HISTORIC PLACES
INVENTORY -- NOMINATION FORM

SEE INSTRUCTIONS IN HOW TO COMPLETE NATIONAL REGISTER FORMS
TYPE ALL ENTRIES -- COMPLETE APPLICABLE SECTIONS

1 NAME
HISTORIC Theodore W. Richards House
AND/OR COMMON

2 LOCATION
STREET & NUMBER 15 Pollen Street
CITY. TOWN Cambridge
STATE Massachusetts

3 CLASSIFICATION
CATEGORY DISTRICT
BUILDING(S) _PUBLIC
STRUCTURE _PRIVATE
SITE _BOTH
OBJECT

OWNER OF PROPERTY
NAME Cecil H. Smith
STREET & NUMBER 15 Pollen Street
CITY. TOWN Cambridge
STATE Massachusetts

LOCATION OF LEGAL DESCRIPTION
COURTHOUSE Middlesex Registry of Deeds
REGISTRY OF DEEDS, ETC.
STREET & NUMBER 3rd and Ottis Streets
CITY. TOWN Cambridge
STATE Massachusetts

REPRESENTATION IN EXISTING SURVEYS
TITLE None
DATE
DEPOSITORY FOR SURVEY RECORDS
CITY, TOWN
STATE

THEME: Americans at Work
SUBTHEME: "Science and Invention"
FOR NPS USE ONLY
RECEIVED
DATE ENTERED

[26]
15 Follen Street was built in 1900. Although the Boston architectural firm of Warren, Smith, and Biscoe designed the house for Theodore W. Richards, Richards, a dedicated "do-it-yourselfer," took an active interest in its construction. He desired that his house be solidly built, for example, the builder used steel instead of lumber for support beams and there is five course brick in the first story walls. Apparently thinking of the cold winter months Richards decided to experiment and used seaweed between the brick courses as insulation.

The two story house does not follow any immediately recognizable architectural style. It is characterized by a brick first story and a shingled second story. From the front the building presents a completely symmetrical appearance with identical bays flanking the arched main entrance with its paladian style door. The house has a hip roof and two chimneys. The interior is characterized by a central hall floor plan. Although 15 Follen Street is a vernacular example of domestic architecture, it is judged to be of sufficient architectural interest to be included in Robert Rettig's Guide to Cambridge Architecture, 10 Walking Tours (1969).

15 Follen Street was the home of Theodore W. Richards from its construction in 1900 until his death in 1928. His widow continued to live in the house until 1941, when it was purchased by the present owner. The integrity of the building is whole. No significant changes or alterations have been made to either the exterior or interior since its construction.
8 SIGNIFICANCE

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>AREAS OF SIGNIFICANCE -- CHECK AND JUSTIFY BELOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREHISTORIC</td>
<td>ARCHEOLOGY-PREHISTORIC</td>
</tr>
<tr>
<td>1400-1499</td>
<td>ARCHEOLOGY-HISTORIC</td>
</tr>
<tr>
<td>1500-1599</td>
<td>AGRICULTURE</td>
</tr>
<tr>
<td>1600-1699</td>
<td>ARCHITECTURE</td>
</tr>
<tr>
<td>1700-1799</td>
<td>ART</td>
</tr>
<tr>
<td>1800-1899</td>
<td>COMMERCE</td>
</tr>
<tr>
<td>1900-</td>
<td>COMMUNICATIONS</td>
</tr>
<tr>
<td>1900-1909</td>
<td>ENGINEERING</td>
</tr>
<tr>
<td>1900-1928</td>
<td>EXPLORATION/SETTLEMENT</td>
</tr>
<tr>
<td>1900-</td>
<td>INDUSTRY</td>
</tr>
<tr>
<td></td>
<td>INVENTION</td>
</tr>
<tr>
<td></td>
<td>LANDSCAPE ARCHITECTURE</td>
</tr>
<tr>
<td></td>
<td>RELIGION</td>
</tr>
<tr>
<td></td>
<td>SCIENCE</td>
</tr>
<tr>
<td></td>
<td>SCULPTURE</td>
</tr>
<tr>
<td></td>
<td>SOCIAL/HUMANITARIAN</td>
</tr>
<tr>
<td></td>
<td>THEATER</td>
</tr>
<tr>
<td></td>
<td>TRANSPORTATION</td>
</tr>
<tr>
<td></td>
<td>OTHER (SPECIFY)</td>
</tr>
</tbody>
</table>

SPECIFIC DATES 1900-1928

STATEMENT OF SIGNIFICANCE

Theodore William Richards was born January 31, 1868, in Germantown, Pennsylvania. Both his father, a successful painter, and his mother were well educated and took an active interest in cultivating the intellectual capabilities of their children. Because of his parents dissatisfaction with the local schools, Richards received most of his elementary and secondary education at home from his mother. By the time he was fourteen he was ready for college and in 1882 he entered Haverford as a sophomore. While still studying at home he had developed an interest in chemistry which he pursued at Haverford where he graduated in 1885 with high honors. The same year he entered Harvard as a senior. For the next three years Richards immersed himself in his chemistry studies earning a bachelor's degree in 1886 and the Ph.D. in 1888. After receiving his Ph.D., Richards made the mandatory trip to Europe where he studied in Germany for a year. An instructorship in chemistry at Harvard awaited him upon his return to the United States. Harvard remained Richards' academic home for the rest of his life. In 1895 he again went to Europe for a year to study at Goettingen with Werner Nernst, one of Germany's most prominent chemists. In 1901 Goettingen offered Richards a research professorship, a coveted position in the German university system. He declined when Harvard matched the offer by promoting him to full professor. In 1912 Harvard appointed Richards to the Erving Professorship of Chemistry. Richards actively filled this chair until almost the day of his death on April 2, 1928.

When once asked by a professional publication to describe the areas of his interest in chemistry, Richards divided his work in five main categories: 1) atomic weights, 2) investigation of various problems concerning equilibrium, 3) original work upon chemical thermodynamics both practical and theoretical, 4) study of various problems in electrochemistry, and, 5) practical and theoretical work concerning the significance of atomic compressibility and the changes exhibited by atomic volumes under varying conditions.¹

MAJOR BIBLIOGRAPHICAL REFERENCES

Eduard Farber, Great Chemists (New York, 1961).

GEOGRAPHICAL DATA

ACREAGE OF NOMINATED PROPERTY: less than one acre

UTM REFERENCES

ZONE EASTING NORTHING
A 1 2 3 4 5 6 7 8 9 0
C

ZONE EASTING NORTHING
B
D

VERBAL BOUNDARY DESCRIPTION

LIST ALL STATES AND COUNTIES FOR PROPERTIES OVERLAPPING STATE OR COUNTY BOUNDARIES

<table>
<thead>
<tr>
<th>STATE CODE</th>
<th>COUNTY CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FORM PREPARED BY

NAME / TITLE
James Sheire, Historian

ORGANIZATION
Historic Sites Survey, National Park Service

STREET & NUMBER
1100 L Street NW.

CITY OR TOWN
Washington

STATE
D.C.

DATE
July 1975

TELEPHONE
202-523-5464

STATE HISTORIC PRESERVATION OFFICER CERTIFICATION

THE EVALUATED SIGNIFICANCE OF THIS PROPERTY WITHIN THE STATE IS:

NATIONAL ___ STATE ___ LOCAL ___

As the designated State Historic Preservation Officer for the National Historic Preservation Act of 1966 (Public Law 89-665), I hereby nominate this property for inclusion in the National Register and certify that it has been evaluated according to the criteria and procedures set forth by the National Park Service.

FEDERAL REPRESENTATIVE SIGNATURE

TITLE DATE

FOR NPS USE ONLY

I HEREBY CERTIFY THAT THIS PROPERTY IS INCLUDED IN THE NATIONAL REGISTER

DIRECTOR, OFFICE OF ARCHEOLOGY AND HISTORIC PRESERVATION ATTEST:

KEEPER OF THE NATIONAL REGISTER
Richards made contributions to chemistry in each of these categories, but they were all based on or derived from the first; his lifelong interest in atomic weights. Richards' interest in atomic weights began while he was a graduate student in the 1880's. When in 1910 he published *Determinations of Atomic Weights*, he was recognized as the leading expert on the subject in the world. Beginning with copper, Richards himself re-determined the atomic weights of barium, strontium, and zinc and later with the assistance of graduate students an additional twenty elements. Not only did Richards determine previously incorrect atomic weights with a precision that stands to the present day, he also developed both methodologies and apparatus which were of great value to the entire spectrum of physical chemistry. According to the *Dictionary of American Biography*, in over 300 papers in physical chemistry Richards proved that he was, "the foremost experimental chemist of his time."

In 1914 the Nobel Prize committee recognized Richards' accomplishments in determining atomic weights by awarding him its coveted prize for chemistry. In awarding the prize the committee demonstrated that by the beginning of this century science in America had fully matured and was the equal of its European sister disciplines.

Richards' major contributions to chemistry came as the result of his research, but he also made contributions to science in America as an outstanding teacher. While at Harvard, Richards built the chemistry department into one of the foremost centers of graduate instruction in chemistry in the country. He daily visited the work benches of his graduate students offering assistance and encouragement. In passing on to them his dedication to highly controlled experimentation and to patient precision, he helped develop a cadre of physical chemists who made significant contributions to chemistry in their own names and who influenced the growth and development of the discipline throughout the United States.

In recognition of Richards' accomplishments the American and international scientific community bestowed on him its most prestigious awards and honors. In addition to the Nobel Prize for Chemistry (1914), he also received the Davy Medal (1910), the Faraday Medal (1911), the Gibbs Medal (1912), the

Franklin Medal (1922), and the Lavoisier Medal (1923). He belonged to all the important American societies, such as the National Academy of Science, and was an honorary member of numerous foreign scientific organizations. In 1925 Harvard established an honorary professorship in chemistry in his name.