United States Department of the Interior
National Park Service

National Register of Historic Places
Registration Form

This form is for use in nominating or requesting determinations of eligibility for individual properties or districts. See Instructions in Guidelines for Completing National Register Forms (National Register Bulletin 16). Complete each item by marking "x" in the appropriate box or by entering the requested information. If an item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, styles, materials, and areas of significance, enter only the categories and subcategories listed in the instructions. For additional space use continuation sheets (Form 10-900-a). Type all entries.

1. Name of Property
 historic name Tacoma Narrows Bridge Ruins
 other names/site number Galloping Gertie

2. Location
 street & number Highway 16 over the Tacoma Narrows
 city, town Tacoma
 state Washington code WA county Pierce code 053 zip code 98406

3. Classification
 Ownership of Property CH private □ public-local □ public-Federal
 Category of Property □ building(s) □ district □ site □ structure □ object
 Number of Resources within Property
 Contributing Noncontributing
 buildings sites structures objects
 □ □ □ □ Total
 Number of contributing resources previously listed in the National Register 0

4. State/Federal Agency Certification
 As the designated authority under the National Historic Preservation Act of 1966, as amended, I hereby certify that this nomination □ request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property □ meets □ does not meet the National Register criteria. □ See continuation sheet.
 Signature of certifying official State or Federal agency and bureau Date

5. National Park Service Certification
 I, hereby, certify that this property is:
 □ entered in the National Register. □ See continuation sheet.
 □ determined eligible for the National Register. □ See continuation sheet.
 □ determined not eligible for the National Register.
 □ removed from the National Register.
 □ other, (explain:)
 □ See continuation sheet.

 Signature of the Keeper Date of Action
6. Function or Use

<table>
<thead>
<tr>
<th>Historic Functions (enter categories from instructions)</th>
<th>Current Functions (enter categories from instructions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation/road-related/bridge</td>
<td>Other: underwater ruins</td>
</tr>
</tbody>
</table>

7. Description

Architectural Classification
(enter categories from instructions)

<table>
<thead>
<tr>
<th>Materials (enter categories from instructions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>foundation</td>
</tr>
<tr>
<td>walls</td>
</tr>
<tr>
<td>roof</td>
</tr>
<tr>
<td>other</td>
</tr>
</tbody>
</table>

Describe present and historic physical appearance.

The first Tacoma Narrows Bridge was revolutionary in its design and historic in its collapse. Its failure on November 7, 1940 marked the end of a trend in bridge engineering towards a maximum of lightness, grace and flexibility. Since the turn of the century, suspension bridge construction valued structural grace and slenderness to achieve an artistic appearance. With its shallow stiffening trusses and slender towers, the bridge across the Narrows was the epitome of artistry in bridge construction.

Prior to the Narrows Bridge, conventional engineering wisdom recommended that stiffening trusses on a suspension bridge be a minimum of 1:40 in depth and that the minimum roadway width compared to the length of the span be 1:30. The eight foot stiffening girders supporting the 2,800 foot span on the Narrows bridge was 1:350 and the roadway to length of span ratio was 1:72. This lightweight design and long center span gave the bridge unparalleled flexibility and beauty.

The original plan for the first bridge was designed by Clark Eldridge, an engineer with the Washington State Department of Highways. His design called for a 5,000-foot, two-lane suspension bridge. The two approach (side) spans were 1,100 feet long, the center span 2,800. Two 425-foot towers rested on deep piers of the cellular caisson design. When completed, the structure was the third longest suspension bridge in the world (The George Washington Bridge in New York City and the Golden Gate Bridge in San Francisco being longer).

Eldridge’s plans were reviewed by a State-appointed engineering consultant, Moran and Proctor, who suggested major revisions to the design. These revisions were ultimately scrapped during the bidding process when a group of contractors informed the State that the revised substructure specifications could not be built. Eldridge’s plan for the substructure was reintroduced into the design. In addition, the State retained Leon S. Moisseiff, a world-renowned bridge designer (Golden Gate Bridge) to examine the design of the superstructure. Moisseiff substituted Eldridge’s 25-foot deep, open stiffening truss with an eight foot, shallow plate grid.

The contract was awarded to the Pacific Bridge Company for their bid of $5,594,730.40 and the associate contractor was Bethlehem Steel Company for the steel and wire. The bridge was opened July 1, 1940. The specifications are listed on the next page.

See continuation sheet
Today the center span and other debris lie on the floor of Puget Sound, where they fell. A site plan of these remains, developed from sonar soundings of the Narrows, is attached. The remains of the center span are readily identifiable on the plan. The videotape "Gertie Gallops Again," prepared by Tacoma Municipal Television for the show "CityScape," is also submitted with the nomination for the historic footage of the collapse and the underwater filming of the present remains.

The side spans were removed and salvaged for their high resale value during the war effort. The original piers were used for the second bridge (1952), and new towers were constructed.

SPECIFICATIONS OF THE FIRST TACOMA NARROWS BRIDGE:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length</td>
<td>5,939 feet</td>
</tr>
<tr>
<td>Suspension bridge section</td>
<td>5,000 feet</td>
</tr>
<tr>
<td>Center span</td>
<td>2,800 feet</td>
</tr>
<tr>
<td>Shore suspension spans, each</td>
<td>1,100 feet</td>
</tr>
<tr>
<td>East approach and anchorage</td>
<td>345 feet</td>
</tr>
<tr>
<td>West approach and anchorage</td>
<td>594 feet</td>
</tr>
<tr>
<td>Center span height above water</td>
<td>195 feet</td>
</tr>
<tr>
<td>Width of roadway</td>
<td>26 feet</td>
</tr>
<tr>
<td>Width of sidewalks, each</td>
<td>5 feet</td>
</tr>
<tr>
<td>Diameter of main suspension cable</td>
<td>17-1/2 inches</td>
</tr>
<tr>
<td>Weight of main suspension cable</td>
<td>3,817 tons</td>
</tr>
<tr>
<td>Weight sustained by cables</td>
<td>11,250 tons</td>
</tr>
<tr>
<td>Number of No. 6 wires each cable</td>
<td>6,308</td>
</tr>
<tr>
<td>Weight shore anchors</td>
<td>52,500 tons</td>
</tr>
<tr>
<td>Towers:</td>
<td></td>
</tr>
<tr>
<td>Height above piers</td>
<td>425 feet</td>
</tr>
<tr>
<td>Weight of each tower</td>
<td>1,927 tons</td>
</tr>
<tr>
<td>Piers:</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>118 feet, 11 inches x 65 feet, 11 inches</td>
</tr>
<tr>
<td>East pier, total height</td>
<td>247 feet</td>
</tr>
<tr>
<td>Depth of water</td>
<td>140 feet</td>
</tr>
<tr>
<td>West pier, total height</td>
<td>198 feet</td>
</tr>
<tr>
<td>Depth of water</td>
<td>120 feet</td>
</tr>
</tbody>
</table>
The significance of the first Tacoma Narrows Bridge is derived directly from its startling collapse on November 7, 1940, which brought engineers world-wide to the realization that aerodynamic phenomena in suspension bridges were not adequately understood in the profession nor had they been addressed in this design. New research was necessary to understand and predict these forces. The official investigation into the collapse (Farquharson et al., 1949-54) recommended the use of wind-tunnel tests to aid in the design of the second Tacoma Narrows Bridge and resulted in the testing of all existing and future bridges across the country. New mathematical theories of vibration in suspension bridges were published as a result of the bridge failure (Bleich et al., 1950) and continues today (Peterson, 1990). Aerodynamics, wave phenomena, and harmonics were all part of the new studies. "Based on these investigations (Farquharson, et al., Bleich et al.), procedures for the design of suspension bridges for aerodynamic excitations were set up, and became in important part of the design process for all major cable supported bridges to be built in the future," wrote Danish engineer Niels J. Gimsung.

The film of the bridge collapsing is a dramatic and on-going teaching tool shown to engineering and physics students, both here and abroad. Physics professors Zollman and Fuller (1982) describe the film as providing "physics teachers with the most captivating demonstration of wave phenomena ever devised." Ivars Peterson, engineer, describes the film as "among the most dramatic and widely known images in science and engineering." The collapse of the Tacoma Narrows Bridge was a singular event in the history of engineering with far-reaching implications in the development of aerodynamics and bridge design, implications which extend beyond political borders and are part of the evolution of civil engineering. The collapse was a failure, but "the most important and spectacular failure in suspension bridge history." As is common in much of human history, we often learn more from our failures than from our successes. For these reasons, the first Tacoma Narrows Bridge is worthy of listing in the National Register by virtue of its role in the history of civil engineering and bridge design.
HISTORICAL BACKGROUND:

There is one point in the 20,000 square miles of Puget Sound where the Washington mainland and the Olympic Peninsula are close - the Narrows at Tacoma. For years, it had been clear to State officials that the Narrows would have to be bridged in order to open up the spectacular and thinly populated Peninsula. Aware of this situation, the Washington State Legislature created the Washington Toll Bridge Authority in 1937, with a mandate to finance, construct and operate toll bridges.

The City of Tacoma and Pierce County Board of Commissioners asked the State to construct a bridge across the Narrows. The legislature appropriated $25,000 to study the request. Satisfied with the results of the study, on May 23, 1938, the State of Washington submitted an application to the Public Works Administration (PWA) requesting funds for construction of a bridge.

Between the time the state legislature authorized the money to study the proposal and the completion of that study, Lacey Murrow, Director of the Washington State Department of Highways, had given Clark Eldridge, a bridge engineer with the department, a green light to design a bridge to span the Narrows. Eldridge went to work, and when he finished, his plan called for a 5,000 foot, two-lane suspension bridge. When completed, the structure would be the third longest suspension bridge in the world (only the George Washington Bridge in New York City and the Golden Gate Bridge in San Francisco were longer).

After examination of Eldridge's plans in May of 1938, the Public Works Administration agreed to finance 45 percent of the construction, provided that the State of Washington retain a board of independent engineering consultants to reexamine Eldridge's design. The State complied and employed the firm of Moran and Proctor to study the plans for the substructure. Furthermore, the State retained Leon S. Moisseiff, the world-renowned suspension bridge builder who had designed the Golden Gate Bridge, to examine the plans concerning the superstructure. Both Moran and Proctor and Moisseiff made significant alterations to Eldridge's original design. Specifically, Moran and Proctor wanted an entirely different substructure. As to Moisseiff, he substituted the 25 foot deep open stiffening truss with an eight foot, shallow plate girder, resulting in a much lighter bridge. His international stature as a builder of suspension bridges was immense; his plans for the Narrows Bridge were the culmination of Moisseiff's efforts to combine grace, lightness and flexibility in suspension bridge construction. The Narrows Bridge was "to stretch like a taut ribbon" across the Narrows.
Prior to the opening of the construction bids, a group of contractors notified the engineers they could not meet the specifications for the substructure. As a result, Moran and Proctor's plans for the substructure were scrapped, and Eldridge's original plans for the substructure were reintroduced. After consultation with Moiseiff, it was agreed that Eldridge's design for the substructure would be used in conjunction with Moiseiff's plans for the superstructure. This modified plan was approved by the Public Works Administration and bids for construction were opened on September 27, 1938. The Pacific Bridge Company's low bid of $5,594,730.40 was accepted. The Bethlehem Steel Company was an associate contractor which supplied and erected the steel and wire. Work on the bridge began in early 1939. On July 1, 1940, the $6.4 million bridge opened; the link between the Washington mainland and the Olympic Peninsula was complete.

Vertical oscillations of the roadbed occurred even during the construction phase and raised questions about the structure's stability. Some breezes as low as four miles per hour caused oscillations, while stronger breezes often had no effect. Hydraulic buffers were installed at the towers to control the stresses, prior to the bridge's opening. The undulations continued, however, and further studies were undertaken at the University of Washington. Their recommendation of the installation of tie-down cables in the side spans were implemented, but to little effect.

Local folks lost no time in nicknaming the bridge "Galloping Gertie." Fascinated by Gertie, thousands of people drove hundreds of miles to experience the sensation of crossing the rolling center span, an experience often times highlighted by the disappearance and then reappearance of cars up ahead. For four months, the Washington Toll Bridge Authority thrived as traffic had trebled from what had been expected. Although concerns about the bridge's stability had been voiced, bridge officials were so confident of the structure, they considered cancelling the insurance policies in order to obtain reduced rates on a new one.

Throughout the early morning hours of Thursday, November 7, 1940, the center span had been undulating three to five feet in winds of 35 to 46 miles per hour. Alarmed by this constant motion, highway officials and state police closed the bridge at 10:00 A.M. Shortly afterwards, the character of the motion dramatically changed from a rhythmic rising and falling to a two-wave twisting motion. The twisting motion grew stronger with each twist; span movement had gone from three to five foot undulations to 25 to 28 foot rises and falls caused by the twisting motion. At this point, the roadbed tilted 45 degrees from horizontal one way, and then 45 degrees from horizontal the other way.
For about 30 minutes, the center span endured the twisting. At about 10:30 A.M., a center span floor panel dropped into the water 195 feet below. The roadbed was breaking up, and chunks of concrete were raining into the Sound. At 11:02 A.M., 600 feet of the western end of the span twisted free, flipped over, and plunged down into the water. Engineers on the scene hoped that once this had happened, the remainder of the span would settle down. This was not to be. The twisting continued, and at 11:09 A.M., the remainder ripped free and thundered down into the Sound. When this happened, the 1,100 foot side spans dropped 60 feet, only to bounce up and then settle into a sag of 30 feet. As for the center span, it rested on the dark and tide-swept bottom of the Narrows.

The spectacular failure was news around the world and was highlighted by the photographs, reports, and film from reports and engineers on the scene. The shock to the engineering profession created much interest in studies of the cause of the collapse. The official investigation team was composed of a prestigious group of engineers from across the country, lead by Professor F. B. Farquharson of the University of Washington, whose studies for the bridge authority began before the bridge's opening. The professional civil engineering society and the U.S. Department of Commerce authorized an Advisory Board on the Investigation of Suspension Bridges, as it was dramatically evident that oscillation and wind effects were not adequately understood.

Although there had been no suspension bridge failures for 51 years, ten suspension bridges were destroyed or damaged by wind in the 19th century, five of these in Great Britain, with the effect that no suspension bridges were built there for over 100 years. During this half century, the trend in bridge design was for spans of ever-increasing length and load-carrying ability, a thin, ribbon-like, artistic appearance, and a belief that a bridge could withstand wind if designed for a static wind pressure of 30 pounds per square foot. The Tacoma Narrows Bridge had met this specification and had been expected to withstand winds greater than the ones which destroyed it.

The aerodynamic studies done after the collapse were the first extensive studies on the effect of wind on bridges. The result was the discovery that the shape of the bridge structure has a primary effect on the bridge's ability to handle wind eddies and stress. The solid floor deck and side panels of Galloping Gertie, when combined with the wind of November 7, 1940, caused stresses which the bridge was not designed to handle. The second Tacoma Narrows Bridge was designed with open side railings and steel grid on the floor deck for the wind to pass through.
The new research stated that the lack of suspension bridge failures for the previous 51 years was due more to a lack of optimum winds for a sufficient period of time than to the design of those bridges. Bridge authorities around the country carried out tests on their suspension bridges with resulting modifications to many structures. Wind tunnel testing became an integral part of the design process for new bridges and for testing existing ones.

The collapse of the Tacoma Narrows Bridge was a hallmark in the history of bridge design and civil engineering. Its impact is still felt in the profession today. The bridge's remains at the bottom of the Sound are a permanent record of man's capacity to build structures without fully understanding the implications of the design and the forces of nature.

FOOTNOTES:

9. Major Bibliographical References

See continuation sheet.

Previous documentation on file (NPS):
☐ preliminary determination of individual listing (36 CFR 67) has been requested
☐ previously listed in the National Register
☐ previously determined eligible by the National Register
☐ designated a National Historic Landmark
☐ recorded by Historic American Buildings
☐ Survey # ________________________
☐ recorded by Historic American Engineering
☐ Record # ________________________

See continuation sheet

10. Geographical Data

Acreage of property
Approximately 20

UTM References

<table>
<thead>
<tr>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>533620</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>5235420</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>534500</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>523440</td>
</tr>
</tbody>
</table>

Verbal Boundary Description

The nominated property is described as that underwater property outlined on the attached site plan, drawn to a scale of 1mm = 3.48 feet. The site is generally described as that underwater area between the east and west pilings of the bridge, and beneath the extant new Tacoma Narrows Bridge.

Boundary Justification

The nominated property includes the underwater area that contains the remains of the collapsed Tacoma Narrows Bridge, as documented by underwater sonar soundings and video photography. The nominated area is generally defined by the east and west pilings of the bridge and the expanse between, now spanned by the new Tacoma Narrows Bridge.

11. Form Prepared By

Valerie Sivinski/Penny Chatfield Sodhi/John M. Simpson
Tacoma Office of Historic Preservation/consultants
747 Market Street, Room 900
Tacoma

January 1991
(206) 591-5220

Washington 98402
Advisory Board on the Investigation of Suspension Bridges, *The Failure of the Tacoma Narrows Bridge*. College Station, Texas: School of Engineering, Texas Engineering Experiment Station, 1944.

